Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
Int J Mol Med ; 53(5)2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38577935

RESUMO

Histone chaperones serve a pivotal role in maintaining human physiological processes. They interact with histones in a stable manner, ensuring the accurate and efficient execution of DNA replication, repair and transcription. Retinoblastoma binding protein (RBBP)4 and RBBP7 represent a crucial pair of histone chaperones, which not only govern the molecular behavior of histones H3 and H4, but also participate in the functions of several protein complexes, such as polycomb repressive complex 2 and nucleosome remodeling and deacetylase, thereby regulating the cell cycle, histone modifications, DNA damage and cell fate. A strong association has been indicated between RBBP4/7 and some major human diseases, such as cancer, age­related memory loss and infectious diseases. The present review assesses the molecular mechanisms of RBBP4/7 in regulating cellular biological processes, and focuses on the variations in RBBP4/7 expression and their potential mechanisms in various human diseases, thus providing new insights for their diagnosis and treatment.


Assuntos
Histonas , Fatores de Transcrição , Humanos , Histonas/genética , Histonas/metabolismo , Fatores de Transcrição/metabolismo , Proteína 4 de Ligação ao Retinoblastoma/química , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Chaperonas de Histonas/genética , Chaperonas de Histonas/química , Chaperonas de Histonas/metabolismo , Ciclo Celular
2.
PeerJ ; 11: e16471, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38034873

RESUMO

Background: Ropivacaine is a local anesthetic commonly used in regional nerve blocks to manage perioperative pain during lung cancer surgery. Recently, the antitumor potential of ropivacaine has received considerable attention. Our previous study showed that ropivacaine treatment inhibits the malignant behavior of lung cancer cells in vitro. However, the potential targets of ropivacaine in lung cancer cells have not yet been fully identified. This study aimed to explore the antitumor effects and mechanisms of action of ropivacaine in lung cancer. Methods: Lung cancer A549 cells were treated with or without 1 mM ropivacaine for 48 h. Quantitative proteomics was performed to identify the differentially expressed proteins (DEPs) triggered by ropivacaine treatment. STRING and Cytoscape were used to construct protein-protein interaction (PPI) networks and analyze the most significant hub genes. Overexpression plasmids and small interfering RNA were used to modulate the expression of key DEPs in A549 and H1299 cells. MTS, transwell assays, and flow cytometry were performed to determine whether the key DEPs were closely related to the anticancer effect of ropivacaine on the malignant behavior of A549 and H1299 cells. Results: Quantitative proteomic analysis identified 327 DEPs (185 upregulated and 142 downregulated proteins) following ropivacaine treatment. Retinoblastoma-binding protein 4 (RBBP4) was one of the downregulated DEPs and was selected as the hub protein. TCGA database showed that RBBP4 was significantly upregulated in lung cancer and was associated with poor patient prognosis. Inhibition of RBBP4 by siRNA resulted in a significant decrease in the proliferation and invasive capacity of lung cancer cells and the induction of cell cycle arrest. Additionally, the results indicated RBBP4 knockdown enhanced antitumor effect of ropivacaine on A549 and H1299 cells. Conversely, the overexpression of RBBP4 using plasmids reversed the inhibitory effects of ropivacaine. Conclusion: Our data suggest that ropivacaine suppresses lung cancer cell malignancy by downregulating RBBP4 protein expression, which may help clarify the mechanisms underlying the antitumor effects of ropivacaine.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Ropivacaina/farmacologia , Proteômica , Pontos de Checagem do Ciclo Celular
3.
Funct Integr Genomics ; 23(2): 78, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36881338

RESUMO

This paper was to uncover the mechanism of circular RNA Argonaute 2 (circAGO2) in colorectal cancer (CRC) progression. The expression of circAGO2 was detected in CRC cells and tissues, and the relationship between clinicopathological features of CRC and circAGO2 level was evaluated. The growth and invasion of CRC cells and subcutaneous xenograft of nude mice were measured to evaluate the effect of circAGO2 on CRC development. Bioinformatics databases were applied to analyze levels of retinoblastoma binding protein 4 (RBBP4) and heat shock protein family B 8 (HSPB8) in cancer tissues. The relevance of circAGO2 and RBBP4 expression and the relationship between RBBP4 and HSPB8 during histone acetylation were assessed. The targeting relationship between miR-1-3p and circAGO2 or RBBP4 was predicted and confirmed. The effects of miR-1-3p and RBBP4 on biological functions of CRC cells were also verified. CircAGO2 was upregulated in CRC. CircAGO2 promoted the growth and invasion of CRC cells. CircAGO2 competitively bound to miR-1-3p and regulated RBBP4 expression, thus inhibiting HSPB8 transcription by promoting histone deacetylation. Silencing circAGO2 enhanced miR-1-3p expression and reduced RBBP4 expression, while suppression of miR-1-3p downgraded levels of miR-1-3p, up-regulated RBBP4, and facilitated cell proliferation and invasion in the presence of silencing circAGO2. RBBP4 silencing decreased RBBP4 expression and reduced proliferation and invasion of cells where circAGO2 and miR-1-3p were silenced. CircAGO2 overexpression decoyed miR-1-3p to increase RBBP4 expression, which inhibited HSPB8 transcription via histone deacetylation in HSPB8 promoter region, promoting proliferation and invasion of CRC cells.


Assuntos
Neoplasias Colorretais , Proteínas de Choque Térmico , MicroRNAs , RNA Circular , Animais , Humanos , Camundongos , Neoplasias Colorretais/genética , Proteínas de Choque Térmico/genética , Histonas , Camundongos Nus , MicroRNAs/genética , Proteína 4 de Ligação ao Retinoblastoma/genética , RNA Circular/genética , Chaperonas Moleculares/genética
4.
Cancer Lett ; 557: 216078, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-36736531

RESUMO

For treatment of glioblastoma (GBM), temozolomide (TMZ) and radiotherapy (RT) exert antitumor effects by inducing DNA double-strand breaks (DSBs), mainly via futile DNA mismatch repair (MMR) and inducing apoptosis. Here, we provide evidence that RBBP4 modulates glioblastoma resistance to chemotherapy and radiotherapy by recruiting transcription factors and epigenetic regulators that bind to their promoters to regulate the expression of the Mre11-Rad50-NBS1(MRN) complex and the level of DNA-DSB repair, which are closely associated with recovery from TMZ- and radiotherapy-induced DNA damage in U87MG and LN229 glioblastoma cells, which have negative MGMT expression. Disruption of RBBP4 induced GBM cell DNA damage and apoptosis in response to TMZ and radiotherapy and enhanced radiotherapy and chemotherapy sensitivity by the independent pathway of MGMT. These results displayed a possible chemo-radioresistant mechanism in MGMT negative GBM. In addition, the RBBP4-MRN complex regulation axis may provide an interesting target for developing therapy-sensitizing strategies for GBM.


Assuntos
Quebras de DNA de Cadeia Dupla , Glioblastoma , Humanos , Glioblastoma/patologia , Enzimas Reparadoras do DNA/genética , Proteína Homóloga a MRE11/genética , Reparo do DNA , Temozolomida/uso terapêutico , Fatores de Transcrição/genética , DNA , Quimiorradioterapia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/genética , Hidrolases Anidrido Ácido/metabolismo , Proteína 4 de Ligação ao Retinoblastoma/genética , Proteína 4 de Ligação ao Retinoblastoma/metabolismo
5.
Thorac Cancer ; 14(7): 662-672, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36691322

RESUMO

BACKGROUND: Circular RNAs (circRNAs) play vital roles in non-small cell lung cancer (NSCLC) progression. Our research analyzed the role of circ_0110498 on the cisplatin (DDP) resistance of NSCLC. METHODS: Cell glycolysis was analyzed by measuring glucose consumption and lactate production. Protein expression was determined by western blot analysis. The expression of circ_0110498, microRNA (miR)-1287-5p and RBBP4 was detected by RT-qPCR assay. Cell counting kit-8, colony formation and transwell assays, together with flow cytometry were conducted to analyze cell DDP resistance, proliferation, metastasis and apoptosis. RESULTS: Circ_0110498 expression was elevated in DDP-resistant NSCLC tissues and cells. Circ_0110498 silencing not only suppressed the DDP resistance of NSCLC cells by inhibiting cell growth, metastasis and glycolysis, but also enhanced the DDP sensitivity of NSCLC tumors. MiR-1287-5p was sponged by circ_0110498, and its inhibitor also reversed the effect of circ_0110498 silencing on the DDP resistance of NSCLC cells. MiR-1287-5p interacted with RBBP4, and RBBP4 overexpression partly reversed the inhibitory effect of miR-1287-5p on the DDP resistance of NSCLC cells. CONCLUSION: Circ_0110498 facilitated DDP resistance partly through mediating the miR-1287-5p/RBBP4 signaling in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Resistencia a Medicamentos Antineoplásicos , MicroRNAs , RNA Circular , Proteína 4 de Ligação ao Retinoblastoma , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Ácido Láctico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína 4 de Ligação ao Retinoblastoma/genética , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , RNA Circular/genética , RNA Circular/metabolismo
6.
Genes Genomics ; 44(10): 1301-1309, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35622231

RESUMO

BACKGROUND: Mounting findings have revealed the increasingly appreciated functional importance of Retinoblastoma binding protein (RBBP) family members in tumorigenesis. However, the biological function of RBBP4 in breast cancer, especially in the most malignant and aggressive subtype, i.e., triple-negative breast cancer (TNBC), remains to be elucidated. OBJECTIVE: The present study was aimed at elucidating the role of RBBP4 in TNBC pathogenesis. METHODS: The expression of RBBP4 in TNBC tissues and cell lines was examined and its oncogenic-related functions were verified by performing a series of in vitro and in vivo experiments. RESULTS: At the cellular and tissue level, a marked increase in the RBBP4 expression was observed. Functionally, RBBP4 knockdown dramatically inhibited the proliferation, invasion, and migration of TNBC cells in vitro. Further, mechanistically, RBBP4 downregulation regulated the inactivation of epithelial-mesenchymal transition (EMT) of TNBC cells. In vivo xenograft model in nude mice also validated these results. CONCLUSION: Collectively, our results showed that the inhibition of RBBP4 suppresses the malignant progression of TNBC cells by regulating EMT. Thus, RBBP4 could serve as a novel biomarker and target for TNBC diagnosis and treatment.


Assuntos
Neoplasias de Mama Triplo Negativas , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Humanos , Camundongos , Camundongos Nus , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo
7.
Chembiochem ; 23(13): e202200038, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35442561

RESUMO

Protopanaxadiol (PPD), a main ginseng metabolite, exerts powerful anticancer effects against multiple types of cancer; however, its cellular targets remain elusive. Here, we synthesized a cell-permeable PPD probe via introducing a bifunctional alkyne-containing diazirine photo-crosslinker and performed a photoaffinity labeling-based chemoproteomic study. We identified retinoblastoma binding protein 4 (RBBP4), a chromatin remodeling factor, as an essential cellular target of PPD in HCT116 colorectal cancer cells. PPD significantly decreased RBBP4-dependent trimethylation at lysine 27 of histone H3 (H3K27me3), a crucial epigenetic marker that correlates with histologic signs of colorectal cancer aggressiveness, and PPD inhibition of proliferation and migration of HCT116 cells was antagonized by RBBP4 RNA silencing. Collectively, our study highlights a previously undisclosed anti-colorectal cancer cellular target of the ginseng metabolite and advances the fundamental understanding of RBBP4 functions via a chemical biology strategy.


Assuntos
Neoplasias Colorretais , Panax , Sapogeninas , Neoplasias Colorretais/tratamento farmacológico , Células HCT116 , Humanos , Panax/química , Proteína 4 de Ligação ao Retinoblastoma/genética , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Sapogeninas/farmacologia , Fatores de Transcrição/metabolismo
8.
G3 (Bethesda) ; 12(6)2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35416979

RESUMO

RBBP4 is a subunit of the chromatin remodeling complexes known as Polycomb repressive complex 2 and histone deacetylase 1/2-containing complexes. These complexes are responsible for histone H3 lysine 27 methylation and deacetylation, respectively. How RBBP4 modulates the functions of these complexes remains largely unknown. We generated viable Rbbp4 mutant alleles in mouse embryonic stem cell lines by CRISPR-Cas9. The mutations disrupted Polycomb repressive complex 2 assembly and H3K27me3 establishment on target chromatin and altered histone H3 lysine 27 acetylation genome wide. Moreover, Rbbp4 mutant cells underwent dramatic changes in transcriptional profiles closely tied to the deregulation of H3K27ac. The alteration of H3K27ac due to RBBP4 dysfunction occurred on numerous cis-regulatory elements, especially putative enhancers. These data suggest that RBBP4 plays a central role in regulating histone H3 lysine 27 methylation and acetylation to modulate gene expression.


Assuntos
Histonas , Lisina , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Acetilação , Animais , Expressão Gênica , Genômica , Histonas/genética , Histonas/metabolismo , Lisina/metabolismo , Metilação , Camundongos , Complexo Repressor Polycomb 2/genética
9.
Dev Dyn ; 251(8): 1267-1290, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35266256

RESUMO

BACKGROUND: Retinoblastoma binding protein 4 (Rbbp4) is a component of transcription regulatory complexes that control cell cycle gene expression. Previous work indicated that Rbbp4 cooperates with the Rb tumor suppressor to block cell cycle entry. Here, we use genetic analysis to examine the interactions of Rbbp4, Rb, and Tp53 in zebrafish neural progenitor cell cycle regulation and survival. RESULTS: Rbbp4 is upregulated across the spectrum of human embryonal and glial brain cancers. Transgenic rescue of rbbp4 mutant embryos shows Rbbp4 is essential for zebrafish neurogenesis. Rbbp4 loss leads to apoptosis and γ-H2AX in the developing brain that is suppressed by tp53 knockdown or maternal zygotic deletion. Mutant retinal neural precursors accumulate in M phase and fail to initiate G0 gene expression. rbbp4; rb1 mutants show an additive effect on the number of M phase cells. In rbbp4 mutants, Tp53 acetylation is detected; however, Rbbp4 overexpression did not rescue DNA damage-induced apoptosis. CONCLUSION: Rbbp4 is necessary for neural progenitor cell cycle progression and initiation of G0 independent of Rb. Tp53-dependent apoptosis in the absence of Rbpb4 correlates with Tp53 acetylation. Together these results suggest that Rbbp4 is required for cell cycle exit and contributes to neural progenitor survival through the regulation of Tp53 acetylation.


Assuntos
Células-Tronco Neurais , Proteína 4 de Ligação ao Retinoblastoma , Proteína Supressora de Tumor p53 , Peixe-Zebra , Acetilação , Animais , Apoptose/genética , Ciclo Celular/genética , Humanos , Células-Tronco Neurais/metabolismo , Proteína 4 de Ligação ao Retinoblastoma/genética , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra
10.
Neuro Oncol ; 24(8): 1261-1272, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35231103

RESUMO

BACKGROUND: RBBP4 activates transcription by histone acetylation, but the partner histone acetyltransferases are unknown. Thus, we investigated the hypothesis that RBBP4 interacts with p300 in a complex in glioblastoma (GBM). METHODS: shRNA silencing of RBBP4 or p300 and RNAseq was used to identify genes co-regulated by RBBP4 and p300 in GBM43 patient-derived xenograft (PDX). RBBP4/p300 complex was demonstrated using proximity ligation assay (PLA) and ChIPseq delineated histone H3 acetylation and RBBP4/p300 complex binding in promoters/enhancers. Temozolomide (TMZ)-induced DNA double strand breaks (DSBs) were evaluated by γ-H2AX and proliferation by CyQuant and live cell monitoring assays. In vivo efficacy was based on survival of mice with orthotopic tumors. RESULTS: shRBBP4 and shp300 downregulated 4768 genes among which 1485 (31%) were commonly downregulated by both shRNAs, while upregulated genes were 2484, including 863 (35%) common genes. The pro-survival genes were the top-ranked among the downregulated genes, including C-MYC. RBBP4/p300 complex was demonstrated in the nucleus, and shRBBP4 or shp300 significantly sensitized GBM cells to TMZ compared to the control shNT in vitro (P < .05). Moreover, TMZ significantly prolonged the survival of mice bearing GBM22-shRBBP4 orthotopic tumors compared with control shNT tumors (median shNT survival 52 days vs. median shRBBP4 319 days; P = .001). CREB-binding protein (CBP)/p300 inhibitor CPI-1612 suppressed H3K27Ac and RBBP4/p300 complex target proteins, including C-MYC, and synergistically sensitized TMZ in vitro. Pharmacodynamic evaluation confirmed brain penetration by CPI-1612 supporting further investigation to evaluate efficacy to sensitize TMZ. CONCLUSIONS: RBBP4/p300 complex is present in GBM cells and is a potential therapeutic target.


Assuntos
Neoplasias Encefálicas , Proteína p300 Associada a E1A , Glioblastoma , Proteína 4 de Ligação ao Retinoblastoma , Acetilação , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular , Resistencia a Medicamentos Antineoplásicos , Proteína p300 Associada a E1A/genética , Proteína p300 Associada a E1A/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Camundongos , Regiões Promotoras Genéticas , Proteína 4 de Ligação ao Retinoblastoma/genética , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Epigenetics ; 17(10): 1205-1218, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34709113

RESUMO

Preimplantation development is critical for reproductive successes in mammals. Thus, it is important to understand how preimplantation embryogenesis is regulated. As a key event of preimplantation development, epigenetic reprogramming has been widely studied, yet how epigenetic complexes regulate preimplantation development remains largely unknown. Retinoblastoma binding protein 4 (RBBP4) and 7 (RBBP7) are integral components of epigenetic complexes including SIN3A, NuRD, and CoREST. Here, we demonstrate that double knockdown of Rbbp4 and 7, but not individually, causes embryonic lethality during the morula-to-blastocyst transition. Mechanistically, depletion of RBBP4 and 7 results in dysregulation of genes related to cell cycle, lineage development, and regulation of transcription, which is accompanied by cell cycle block, disrupted lineage specification and chromatin structure. Interestingly, RBBP4/7 depletion leads to a dramatic increase in H3.3 and H3K27ac abundance during morula-to-blastocyst transition. ChIP-seq analysis in early embryos and embryonic stem cells reveals enrichment of H3.3 at the promoter regions of RBBP4/7 target genes. In summary, our studies demonstrate the compensatory role of RBBP4/7 and reveal its potential mechanisms in preimplantation development.Summary sentence:RBBP4 and RBBP7 play a compensatory role in regulating cell proliferation, apoptosis, and histone H3.3 deposition during preimplantation development.


Assuntos
Histonas , Proteína 4 de Ligação ao Retinoblastoma , Animais , Blastocisto/metabolismo , Proliferação de Células , Cromatina/metabolismo , Metilação de DNA , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Histonas/genética , Histonas/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , Camundongos , Proteína 4 de Ligação ao Retinoblastoma/química , Proteína 4 de Ligação ao Retinoblastoma/genética , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Proteína 7 de Ligação ao Retinoblastoma/genética , Proteína 7 de Ligação ao Retinoblastoma/metabolismo , Fatores de Transcrição/genética
12.
Nucleic Acids Res ; 49(11): 6196-6212, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34086947

RESUMO

Retinoblastoma-binding proteins 4 and 7 (RBBP4 and RBBP7) are two highly homologous human histone chaperones. They function in epigenetic regulation as subunits of multiple chromatin-related complexes and have been implicated in numerous cancers. Due to their overlapping functions, our understanding of RBBP4 and 7, particularly outside of Opisthokonts, has remained limited. Here, we report that in the ciliate protozoan Tetrahymena thermophila a single orthologue of human RBBP4 and 7 proteins, RebL1, physically interacts with histone H4 and functions in multiple epigenetic regulatory pathways. Functional proteomics identified conserved functional links for Tetrahymena RebL1 protein as well as human RBBP4 and 7. We found that putative subunits of multiple chromatin-related complexes including CAF1, Hat1, Rpd3, and MuvB, co-purified with RebL1 during Tetrahymena growth and conjugation. Iterative proteomics analyses revealed that the cell cycle regulatory MuvB-complex in Tetrahymena is composed of at least five subunits including evolutionarily conserved Lin54, Lin9 and RebL1 proteins. Genome-wide analyses indicated that RebL1 and Lin54 (Anqa1) bind within genic and intergenic regions. Moreover, Anqa1 targets primarily promoter regions suggesting a role for Tetrahymena MuvB in transcription regulation. RebL1 depletion inhibited cellular growth and reduced the expression levels of Anqa1 and Lin9. Consistent with observations in glioblastoma tumors, RebL1 depletion suppressed DNA repair protein Rad51 in Tetrahymena, thus underscoring the evolutionarily conserved functions of RBBP4/7 proteins. Our results suggest the essentiality of RebL1 functions in multiple epigenetic regulatory complexes in which it impacts transcription regulation and cellular viability.


Assuntos
Chaperonas de Histonas/metabolismo , Proteínas de Protozoários/metabolismo , Tetrahymena thermophila/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Evolução Biológica , Sequência Conservada , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Expressão Gênica , Células HEK293 , Chaperonas de Histonas/química , Chaperonas de Histonas/fisiologia , Histonas/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/mortalidade , Oncogenes , Proteínas de Protozoários/química , Proteínas de Protozoários/fisiologia , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Proteína 7 de Ligação ao Retinoblastoma/metabolismo , Tetrahymena thermophila/genética , Tetrahymena thermophila/crescimento & desenvolvimento
13.
Stem Cell Reports ; 16(3): 566-581, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33606987

RESUMO

Polycomb group (PcG) proteins exist in distinct multi-protein complexes and play a central role in silencing developmental genes, yet the underlying mechanisms remain elusive. Here, we show that deficiency of retinoblastoma binding protein 4 (RBBP4), a component of the Polycomb repressive complex 2 (PRC2), in embryonic stem cells (ESCs) leads to spontaneous differentiation into mesendodermal lineages. We further show that Rbbp4 and core PRC2 share an important number of common genomic targets, encoding regulators involved in early germ layer specification. Moreover, we find that Rbbp4 is absolutely essential for genomic targeting of PRC2 to a subset of developmental genes. Interestingly, we demonstrate that Rbbp4 is necessary for sustaining the expression of Oct4 and Sox2 and that the forced co-expression of Oct4 and Sox2 fully rescues the pluripotency of Rbbp4-null ESCs. Therefore, our study indicates that Rbbp4 links maintenance of the pluripotency regulatory network with repression of mesendoderm lineages.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Complexo Repressor Polycomb 2/fisiologia , Proteína 4 de Ligação ao Retinoblastoma/fisiologia , Animais , Linhagem Celular , Autorrenovação Celular , Sequenciamento de Cromatina por Imunoprecipitação , Técnicas de Inativação de Genes , Células HEK293 , Histonas/metabolismo , Humanos , Metilação , Camundongos , Fator 3 de Transcrição de Octâmero/metabolismo , Fatores de Transcrição SOXB1/metabolismo
14.
Biomed Res Int ; 2021: 6905985, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33506032

RESUMO

BACKGROUND: The majority of lung cancers are adenocarcinomas, with the proportion being 40%. The patients are mostly diagnosed in the middle and late stages with metastasis and easy recurrence, which poses great challenge to the treatment and prognosis. Platinum-based chemotherapy is a primary treatment for adenocarcinoma, which frequently causes drug resistance. As a result, it is important to uncover the mechanisms of the chemoresponse of adenocarcinoma to platinum-based chemotherapy. METHODS: The genes from the dataset GSE7880 were gathered into gene modules with the assistance of weighted gene coexpression network analysis (WGCNA), the gene trait significance absolute value (|GS|), and gene module memberships (MM). The genes from hub gene modules were calculated with a protein-protein interaction (PPI) network analysis in order to obtain a screening map of hub genes. The hub genes with both a high |GS| and MM and a high degree were selected. Furthermore, genes in the hub gene modules also went through a Gene Ontology (GO) functional enrichment analysis. RESULTS: 11 hub genes in four hub gene modules (LY86, ACTR2, CDK2, CKAP4, KPNB1, RBBP4, SMAD4, MYL6, RPS27, TSPAN2, and VAMP2) were chosen as the significant hub genes. Through the GO function enrichment analysis, it was indicated that four modules were abundant in immune system functions (floralwhite), amino acid biosynthetic process (lightpink4), cell chemotaxis (navajowhite2), and targeting protein (paleturquoise). Four hub genes with the highest |GS| were verified by prognostic analysis.


Assuntos
Adenocarcinoma de Pulmão , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , Compostos de Platina/farmacologia , Proteína 4 de Ligação ao Retinoblastoma , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/mortalidade , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Prognóstico , Mapas de Interação de Proteínas/efeitos dos fármacos , Mapas de Interação de Proteínas/genética , Proteína 4 de Ligação ao Retinoblastoma/genética , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
15.
J Biochem ; 169(1): 65-73, 2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33084863

RESUMO

Circular RNAs (circRNAs) are important regulators in various cancers. Previous studies have found that hsa_circ_0102231 is an oncogene in lung adenocarcinoma. Here, we investigated its mechanism in the development of non-small cell lung cancer (NSCLC). We detected the levels of hsa_circ_0102231 in five NSCLC cell lines and one normal bronchial epithelium cell line. The interaction between hsa_circ_0102231 and miR-145 was predicted and confirmed by pull-down and luciferase assays. The nuclear mass separation assay and fluorescence in situ hybridization were used to detect the distribution of hsa_circ_0102231. Cell Counting Kit-8 and Transwell assays were used to assess the cell proliferative and invasive ability. Western blot and RT-qPCR, respectively, detected the protein and mRNA levels of RBBP4. The RBBP4 promoter activity was detected with a luciferase assay. We found that hsa_circ_0102231 level was higher in NSCLC cells. hsa_circ_0102231 is mainly localized to the cytoplasm. hsa_circ_0102231 promotes NSCLC cell proliferation and invasion by sponge for miR-145. miR-145 significantly decreases the RBBP4 promoter activity, and its mRNA and protein levels. RBBP4 is an oncogene to promote proliferation and invasion ability. Our findings suggest that hsa_circ_0102231 promotes proliferation and invasion by mediating the miR-145/RBBP4 axis in NSCLC, indicating that it might be a potential target for NSCLC treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células , Neoplasias Pulmonares/patologia , MicroRNAs/metabolismo , RNA Circular/metabolismo , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Células A549 , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Técnicas de Silenciamento de Genes , Humanos , Hibridização in Situ Fluorescente , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , MicroRNAs/genética , Invasividade Neoplásica , Oncogenes , RNA Circular/genética , Proteína 4 de Ligação ao Retinoblastoma/genética , Regulação para Cima
16.
Angew Chem Int Ed Engl ; 60(4): 1813-1820, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33022847

RESUMO

The scaffolding protein RbAp48 is part of several epigenetic regulation complexes and is overexpressed in a variety of cancers. In order to develop tool compounds for the study of RbAp48 function, we have developed peptide inhibitors targeting the protein-protein interaction interface between RbAp48 and the scaffold protein MTA1. Based on a MTA1-derived linear peptide with low micromolar affinity and informed by crystallographic analysis, a bicyclic peptide was developed that inhibits the RbAp48/MTA1 interaction with a very low nanomolar KD value of 8.56 nM, and which showed appreciable stability against cellular proteases. Design included exchange of a polar amide cyclization strategy to hydrophobic aromatic linkers enabling mono- and bicyclization by means of cysteine alkylation, which improved affinity by direct interaction of the linkers with a hydrophobic residue on RbAp48. Our results demonstrate that stepwise evolution of a structure-based design is a suitable strategy for inhibitor development targeting PPIs.


Assuntos
Desenho de Fármacos , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Proteína 4 de Ligação ao Retinoblastoma/antagonistas & inibidores , Sequência de Aminoácidos , Dicroísmo Circular , Cristalografia por Raios X , Humanos , Interações Hidrofóbicas e Hidrofílicas , Mutação , Conformação Proteica , Termodinâmica
17.
Arthritis Rheumatol ; 73(6): 980-990, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33369221

RESUMO

OBJECTIVE: To investigate the functional consequences of the single-nucleotide polymorphism rs4648889 in a putative enhancer upstream of the RUNX3 promoter associated with susceptibility to ankylosing spondylitis (AS). METHODS: Using nuclear extracts from Jurkat cells and primary human CD8+ T cells, the effects of rs4648889 on allele-specific transcription factor (TF) binding were investigated by DNA pull-down assay and quantitative mass spectrometry (qMS), with validation by electrophoretic mobility shift assay (EMSA), Western blotting of the pulled-down eluates, and chromatin immunoprecipitation (ChIP)-quantitative polymerase chain reaction (qPCR) analysis. Further functional effects were tested by small interfering RNA knockdown of the gene for interferon regulatory factor 5 (IRF5), followed by reverse transcription-qPCR (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA) to measure the levels of IFNγ messenger RNA (mRNA) and protein, respectively. RESULTS: In nuclear extracts from CD8+ T cells, results of qMS showed that relative TF binding to the AS-risk A allele of rs4648889 was increased 3.7-fold (P < 0.03) for Ikaros family zinc-finger protein 3 (IKZF3; Aiolos) and components of the NuRD complex, including chromodomain helicase DNA binding protein 4 (CHD4) (3.6-fold increase; P < 0.05) and retinoblastoma binding protein 4 (RBBP4) (4.1-fold increase; P < 0.03). In contrast, IRF5 bound significantly more to the AS-protective G allele compared to the AS-risk A allele (fold change 8.2; P = 0.003). Validation with Western blotting, EMSA, and ChIP-qPCR confirmed the differential allelic binding of IKZF3, CHD4, RBBP4, and IRF5. Silencing of IRF5 in CD8+ T cells increased the levels of IFNγ mRNA as measured by RT-qPCR (P = 0.03) and IFNγ protein as measured by ELISA (P = 0.02). CONCLUSION: These findings suggest that the association of rs4648889 with AS reflects allele-specific binding of this enhancer-like region to certain TFs, including IRF5, IKZF3, and members of the NuRD complex. IRF5 may have crucial influences on the functions of CD8+ lymphocytes, a finding that could reveal new therapeutic targets for the management of AS.


Assuntos
Subunidade alfa 3 de Fator de Ligação ao Core/genética , RNA Mensageiro/metabolismo , Espondilite Anquilosante/genética , Western Blotting , Linfócitos T CD8-Positivos , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Ensaio de Imunoadsorção Enzimática , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Predisposição Genética para Doença , Humanos , Fator de Transcrição Ikaros/genética , Fator de Transcrição Ikaros/metabolismo , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Interferon gama/genética , Interferon gama/metabolismo , Células Jurkat , Espectrometria de Massas , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Polimorfismo de Nucleotídeo Único , RNA Interferente Pequeno , Proteína 4 de Ligação ao Retinoblastoma/genética , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espondilite Anquilosante/metabolismo , Fatores de Transcrição/metabolismo
18.
Nucleic Acids Res ; 48(22): 12972-12982, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33264408

RESUMO

Class I histone deacetylase complexes play essential roles in many nuclear processes. Whilst they contain a common catalytic subunit, they have diverse modes of action determined by associated factors in the distinct complexes. The deacetylase module from the NuRD complex contains three protein domains that control the recruitment of chromatin to the deacetylase enzyme, HDAC1/2. Using biochemical approaches and cryo-electron microscopy, we have determined how three chromatin-binding domains (MTA1-BAH, MBD2/3 and RBBP4/7) are assembled in relation to the core complex so as to facilitate interaction of the complex with the genome. We observe a striking arrangement of the BAH domains suggesting a potential mechanism for binding to di-nucleosomes. We also find that the WD40 domains from RBBP4 are linked to the core with surprising flexibility that is likely important for chromatin engagement. A single MBD2 protein binds asymmetrically to the dimerisation interface of the complex. This symmetry mismatch explains the stoichiometry of the complex. Finally, our structures suggest how the holo-NuRD might assemble on a di-nucleosome substrate.


Assuntos
Cromatina/genética , Proteínas de Ligação a DNA/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Proteínas Repressoras/genética , Proteína 4 de Ligação ao Retinoblastoma/genética , Transativadores/genética , Sequência de Aminoácidos/genética , Microscopia Crioeletrônica , Proteínas de Ligação a DNA/ultraestrutura , Histona Desacetilase 1/genética , Histona Desacetilase 1/ultraestrutura , Histona Desacetilases/genética , Histona Desacetilases/ultraestrutura , Humanos , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/ultraestrutura , Nucleossomos/genética , Nucleossomos/ultraestrutura , Ligação Proteica/genética , Domínios Proteicos/genética , Proteínas Repressoras/ultraestrutura , Proteína 4 de Ligação ao Retinoblastoma/ultraestrutura , Transativadores/ultraestrutura
19.
World J Gastroenterol ; 26(35): 5328-5342, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32994691

RESUMO

BACKGROUND: Our previous study demonstrated that RBBP4 was upregulated in colon cancer and correlated with poor prognosis of colon cancer and hepatic metastasis. However, the potential biological function of RBBP4 in colon cancer is still unknown. AIM: To investigate the biological role and the potential mechanisms of RBBP4 in colon cancer progression. METHODS: Real-time polymerase chain reaction and western blot analysis were used to detect the expression of RBBP4 in colon cancer cell lines. The cell proliferation and viability of SW620 and HCT116 cells with RBBP4 knockdown was detected by Cell Counting Kit-8 and 5-ethynyl-2'-deoxyuridine staining. The transwell assay was used to detect the invasion and migration capabilities of colon cancer cells with RBBP4 knockdown. Flow cytometry apoptosis assay was used to detect the apoptosis of colon cancer cells. Western blotting analysis was used to detect the expression of epithelial-mesenchymal transition and apoptosis related markers in colon cancer. The nuclear translocation of ß-catenin was examined by Western blotting analysis in colon cancer cells with RBBP4 knockdown. The TOPFlash luciferase assay was used to detect the effect of RBBP4 on Wnt/ß-catenin activation. The rescue experiments were performed in colon cancer cells treated with Wnt/ß-catenin activator LiCl and RBBP4 knockdown. RESULTS: We found that RBBP4 was highly expressed in colon cancer cell lines. The 5-ethynyl-2'-deoxyuridine assay showed that knockdown of RBBP4 significantly inhibited cell proliferation. RBBP4 inhibition reduced cell invasion and migration via regulating proteins related to epithelial-mesenchymal transition. Knockdown of RBBP4 significantly inhibited survivin-mediated apoptosis. Mechanistically, the TOPFlash assay showed that RBBP4 knockdown increased activity of the Wnt/ß-catenin pathway. Meanwhile, RBBP4 knockdown suppressed nuclear translocation of ß-catenin. With Wnt/ß-catenin activator, rescue experiments suggested that the role of RBBP4 in colon cancer progression was dependent on Wnt/ß-catenin pathway. CONCLUSION: RBBP4 promotes colon cancer development via increasing activity of the Wnt/ß-catenin pathway. RBBP4 may serve as a novel therapeutic target in colon cancer.


Assuntos
Neoplasias do Colo , Proteína 4 de Ligação ao Retinoblastoma/genética , Via de Sinalização Wnt , beta Catenina , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias do Colo/genética , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Invasividade Neoplásica , beta Catenina/metabolismo
20.
Biol Reprod ; 103(1): 13-23, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32285100

RESUMO

Retinoblastoma-binding protein 4 (RBBP4) (also known as chromatin-remodeling factor RBAP48) is an evolutionarily conserved protein that has been involved in various biological processes. Although a variety of functions have been attributed to RBBP4 in vitro, mammalian RBBP4 has not been studied in vivo. Here we report that RBBP4 is essential during early mouse embryo development. Although Rbbp4 mutant embryos exhibit normal morphology at E3.5 blastocyst stage, they cannot be recovered at E7.5 early post-gastrulation stage, suggesting an implantation failure. Outgrowth (OG) assays reveal that mutant blastocysts cannot hatch from the zona or can hatch but then arrest without further development. We find that while there is no change in proliferation or levels of reactive oxygen species, both apoptosis and histone acetylation are significantly increased in mutant blastocysts. Analysis of lineage specification reveals that while the trophoblast is properly specified, both epiblast and primitive endoderm lineages are compromised with severe reductions in cell number and/or specification. In summary, these findings demonstrate the essential role of RBBP4 during early mammalian embryogenesis.


Assuntos
Apoptose , Blastocisto/fisiologia , Perda do Embrião , Endoderma/embriologia , Histonas/metabolismo , Proteína 4 de Ligação ao Retinoblastoma/fisiologia , Acetilação , Animais , Implantação do Embrião/fisiologia , Desenvolvimento Embrionário/fisiologia , Endoderma/citologia , Feminino , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 4 de Ligação ao Retinoblastoma/deficiência , Proteína 4 de Ligação ao Retinoblastoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...